RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

SECOND YEAR
B.A./B.Sc. FOURTH SEMESTER (January – June) 2015
Mid-Semester Examination, March 2015

Date : 20/03/2015	MATH FOR ECO (General)	
Time : 12 noon – 1 pm	Paper : IV	Full Marks : 25
	[Use a separate answer book for each group]	
	Group – A	

1. Answer <u>any one</u> :

a)	Define Kernel of a linear transformation. Let $T: V \rightarrow W$ be a linear transformation. Prove that	
	Ker T is a subspace of V.	[1+4]
b)	A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by	

$$T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3), (x_1, x_2, x_3) \in \mathbb{R}^3.$$
 Find Ker T and dimension of Ker T. [4+1]

2. Answer <u>any two</u> :

- a) i) Prove that intersection of two subgroups of a group is a subgroup of the same group.
 - ii) Prove that any group of prime order is cyclic.
- b) i) State Lagrange's theorem.
 - ii) Show that (S, \bullet) is an abelian group, where S is the set of permutations on the set {1,2,3,4}

given by : $S = \begin{cases} 1 \\ 1 \end{cases}$	2 2	3 3	$\binom{4}{4}, \binom{1}{2}$	2 1	3 3	$\binom{4}{4}, \binom{1}{1}$	2 2	3 4	$\binom{4}{3}, \binom{1}{2}$	2 1	3 4	$ \begin{array}{c} 4 \\ 3 \end{array} \right\} \& \cdot \cdot \cdot is $	the	
composition of mu	ltip	lica	tion of pe	erm	utat	ions.								[1+4]

c) Show that A_3 is a normal subgroup of S_3 .

<u>Group – B</u>

Answer <u>any one</u> :

3. a) For a 24-hour restaurant the following waitresses are required :

Minimum number of Waitresses
5
7
10
8
12
4

Each waitress works eight consecutive hours per day. Find a linear programming model to find the smallest number of waitresses required to comply with the above requirements.

b) Explain <u>any three</u> of the following terms :

- i) linearly independent set
- ii) Spanning set
- iii) Basis
- iv) Basic feasible solution

[3×2]

[1×5]

[2×5]

[2+3]

[5]

[1×10]

[4]

4. a) Reduce the following linear programming problem in a standard maximization form : Minimize $Z = 3x_1 - 4x_2 + 7x_3$

Subject to $x_1 + x_2 + 7x_3 \le 50$ $5x_1 + 3x_2 = 20$ $|3x_2 + 4x_3| \le 100$

where $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign.

b) Solve the following Linear Programming Problem by Simplex method.

Maximize $Z = 2x_1 + 3x_2 + x_3$

Subject to
$$-3x_1 + 2x_2 + 3x_3 = 8$$

 $-3x_1 + 4x_2 + 2x_3 = 7$
and $x_1, x_2, x_3 \ge 0$

5. a) In the following L.P.P

Maximize $Z = 2x_1 - 4x_2 + 5x_3 - 6x_4$

Subject to $x_1 + 4x_2 - 2x_3 + 8x_4 + x_5 = 2$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + x_6 = 1$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

determine i) the maximum number of possible basic solutions

- ii) the feasible extreme points
- iii) the optimal basic feasible solution
- b) An intermediate table of an L.P.P by simplex method is given below in an incomplete form

			Cj		-2	0	0	0	
CB	В	X _B	b	a ₁	a ₂	a ₃	a_4	a ₅	a ₆
-4			$\frac{24}{5}$			$-\frac{2}{5}$	0	$\frac{1}{5}$	
–M		Х ₆	$\frac{18}{5}$			$\frac{1}{5}$	-1	$\frac{2}{5}$	
-2			$\frac{63}{5}$						
$Z_j - C_j$				0	0	$-\frac{M}{5}+\frac{6}{5}$	М	$-\frac{2}{5}M+\frac{2}{5}$	0

- i) Complete the table
- ii) Find the entering and departing vectors
- iii) Write down the next table and show that the next table gives the unique optimal solution. [2+1+2]

_____ X _____

[1+2+2]

[4]

[6]